
Shepherd: Optical Effects of Intraocular Gas Tamponade 1

Optical Effects of Intraocular Gas Tamponade
Joseph E. Shepherd1

March 23, 2019

Abstract Optical effects associated with refraction created by intraocular gas tam-
ponade following retina surgery are reported and analyzed. Observations of dra-
matic change in both near point and magnification are explained using ray tracing
and simplified models of the eye as an optical system. The gas bubble shapes are
computed using the Young-Laplace law and compared to previous clinical mea-
surements and analyses. The effect of bubble shape on refraction is determined by
including the curvature of the gas-liquid interface on the optical axis of a downward
facing eye. A possible clinical application is the estimation of gas volume from
near point measurements.

1 Introduction
Following the vitrectomy, photocoagulation treatment of lattice thinning and removal of an epiretinal membrane on my
right eye, the intraocular volume was partially filled with gas (SF6/air mixture). For several days following the surgery,
my perception in that eye was quite limited and I noticed only vague shapes and colors. Quite by accident one day, I
brought the screen of my cell phone close to my face while I was looking directly downward as in Figure 1 and was
startled to see an enlarged image of the icons in my right eye. After some experimentation with various objects (like
my keyboard shown in the simulated image of Fig. 1) at different distances from my eye, I realized that the gas layer
between the retina and fluid that partially filling the intraocular cavity was altering the optics of the eye to produce a
magnifying glass effect. As the gas “bubble” was absorbed in following days, I noticed that the distance at which I
could bring objects to focus was becoming progressively further from my eye. At the same time, I could see more of
the meniscus between the vitreous humor and the retina at the periphery of my vision when looking downward.

Figure 1: Left: Simulation of visual effect I observed looking downward through the gas bubble in my eye. Right:
Geometry of a large gas bubble within the eye looking directly downward with a vertical optical axis.

2 Optical Analysis
Intrigued by this effect I set out to find an explanation using the science of optics. To do this, I needed a model of
the eye as an optical system and a method of optical analysis that could account for the effects of the gas layer. The
century-old schematic model of the eye by Gullstrand (see Appendix II in von Helmholtz, 1924) is appropriate for our
purposes with modern values of the parameters (Gross et al., 2015). Geometrical optics is the oldest and simplest
method of optical analysis and is adequate for our investigation of the properties of focal distance and magnification.

1Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125 USA. jeshep@caltech.edu
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Geometrical optics is based on tracing representative rays of light through the optical components to determine the
location and size of images, applying Snell’s law to compute refraction; the details of the ray tracing and eye model
are given at the end of this note. The first model of the gas layer I investigated assumed that the layer was flat near the
optical axis. This turns out to be a reasonable approximation for gas volumes greater than 1.5 to 2 cm3 (layers greater
than 10 mm thick) but not for smaller gas volumes.

Example rays and the effect of gas are shown in the diagrams of Figure 2 for both the relaxed eyemodel (left column)
and the accommodation variant (right column). Only the upper half of the eye is shown because these schematic models
are symmetric about the optical axis of the eye. To make the calculations simple, we will consider the object and image
to be on the optical axis although in the real eye these are slightly off-axis due to the displacement of the macula, where
the image is usually centered. The top row of diagrams shows results for the normal (no gas) eye with the source placed
at the conjugate focus to the retina2 of the eye to simulate the formation of an image on the retina as indicated by the
convergence of the rays to the point where the optical axis intersects the retina. The middle row of diagrams shows
the effect of leaving the object at the same location and adding a 10 mm gas layer.3 The convergence of the rays to a
point within the gas layer indicates that the image is focused several mm ahead of the retina, as in the myopic eye, and
the image on the retina will be out of focus, which explains the blurry images experienced when looking through the
gas bubble at objects far away from the eye. The convergence of the rays before reaching the retina is a consequence
of Snell’s law: rays passing from the higher refractive index (n = 1.336) vitreous humor into the much lower refractive
index (n ≈ 1) gas are bent away from the normal to the interface, toward the optical axis.

The bottom row illustrates what happens when the object is brought closer to eye and located at the conjugate
focus.4 The rays now converge to a point on the retina and will form a focused image. This is the effect that I observed
when bringing my cell phone screen close to my right eye. The near point (closest distance at which a focused image
can be formed) can be approximated as the location of conjugate focus. As shown in Figure 3, the near point decreases
with increasing thickness of the gas layer, reaching a minimum value of 58 to 82 mm (depending on the eye model)
from the vertex (z = 0) of the cornea when the intraocular space is completely filled with gas.

When holding the head in a tilted position rather than looking straight downward, objects located close to the eye
can still be imaged but appeared displaced in position compared to the location observed by the other eye or region
of the retina not covered by gas This effect is due to the refraction of light passing obliquely through the gas-vitreous
humor interface as shown in Figure 4. Light is not only refracted in passing through the interface but also reflected.
If there are bright lights within the field of view and I hold my head up so that the gas moves to the top of my eye,
these reflections will be visible as streaks of light when the gas bubble is sufficiently small that the retina is covered by
vitreous fluid in the peripheral regions. When the angle of incidence5 exceeds the critical angle of 48.4◦, the incident
light is completely reflected and the region within the meniscus will appear as a dark semi-ellipsoidal region at the
bottom of my field of vision. The intensity of light observed through the meniscus region will continuously decrease
as I change my gaze by rotating my head from looking directly downward until my gaze is elevated upward at the
critical angle. This corresponds to a gaze angle of approximately 45◦ downward from the horizontal. The meniscus
is perceived at the bottom of the field of vision and the streaks at the top due to inversion carried out by the vision
processing of the brain.

What about the magnification effect? The refraction of the rays at the gas-vitreous humor interface also changes
the size of the image on the retina compared to the size without the gas layer. This is a consequence of moving the near
point closer the eye, the same effect occurs when using a magnifying glass on a normal eye. For example, a typical
5-power magnifying glass (a lens with a focal length of 50 mm) held 25 mm from the cornea of our accommodation
model eye will image an object held at distance of 41 mm from the lens and the image on the retina will be 5.5 times
larger than the image of the same object held at the near point (250 mm from the cornea) without magnification. The
magnifying effect of gas layer with a flat interface at the optical axis is found to increase linearly with increasing layer
thickness for the accommodation model eyes. The lateral magnification with a 10 mm gas layer is 4 for the 250 mm
near point model eye and 12 for the 1000 mm near point model eye.

2The conjugate focus is measured relative to the vertex of the cornea and located at infinity for the relaxed eye model and either 250 or 1000 mm
for the accommodation variants I examined.

3The situation shown corresponds to looking straight down as in the eye diagram above so that so that the gas-vitreous humor interface is
horizontal and perpendicular to the optical axis.

4With the 10 mm gas layer, the location of the conjugate focus is 126 mm for the relaxed eye model, and 88 mm for the accommodation variant
with 250 mm near point and 93 mm for the 1000 mm near point eye model.

5The convention in optics is that incidence angle is measured relative to the direction perpendicular to surface on the side the light is incident
from, in this case on the vitreous humor side of the interface with gas.
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Figure 2: Light rays illustrating the effect of a gas layer (with a flat interface at the optical axis) on the focusing ability
of the eye. Left column (a, b c) - relaxed eye model of Gullstrand-Le Grand. Right column (d, e, f) - accommodation
model variant of Gullstrand-Le Grand model. Top row - normal eye with object at the conjugate focus of the retina.
Middle row - same as top row with addition of a 10 mm thick layer of gas. Bottom row - same as middle row except
the object is moved to the conjugate focus of retina.

3 Bubble Shape Effects
As the gas bubble shrinks, the gas-vitreous interface becomes increasingly curved (see Figure 5) due to surface tension,6
eventually forming a nearly spherical bubble for sufficiently small amounts of gas. This creates two additional optical
effects. First, the refraction of light through the curved interface at the optical axis reduces the intensity of light
reaching the retina, creating a continuous decrease in intensity from the center to the edge of the bubble, which appears
completely dark with sharp transition to the surrounding bright field. Second, the curved interface acts as lens with a
negative focal length, which causes the near point for images formed within the bubble region to recede as the bubble
shrinks. Assuming a head-down position with a vertical optical axis, we can analyze this optical effect by determining
the curvature (Figure 5) of the interface near the optical axis from the the shape of the bubble. The shape of the bubble
is determined by the competing forces of buoyancy and interfacial forces and is computed using the Young-Laplace

6The curvature of the interface and the meniscus effect due to the contact angle and surface tension can be clearly observed in CT (see Fig. 6 and
7 of Hilton and Grizzard (1986)) and MRI scans (see Fig. 11 and 12 of Ito (2016)).
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Figure 3: Conjugate focus location as a function of gas layer thickness for both the relaxed eye model and two
accommodation models. Results obtained with a flat interface at the optical axis.
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Figure 4: Optical effects at the vitreous humour-gas interface. Left: refraction. Right: total internal reflection (artwork
from http://etc.usf.edu/clipart/).

equation and methods of analysis pioneered by Adams (Bashforth and Adams, 1883).
The optical effect of the curvature of the vitreous humor-gas interface can be treated in the ray tracing computation

by setting the interface radius of curvature at the optical axis equal to that computed by the Young-Laplace model. The
smaller the gas volume and interface layer thickness, the greater the curvature at the optical axis. The result is that the
magnification is reduced and the near point increased from the flat interface values. The magnification and near point
have the same trends with decreasing gas layer height for both flat and curved interfaces until the layer becomes less
than 2.1 mm thick (gas volume less than 0.05 cm3).

For the two accommodation eye models with the curved interface effect included, the conjugate focus location does
not increase monotonically with decreasing gas layer thickness but achieves a maximum value that is larger than the
gas-free near point value for a layer thickness of about 2 mm as shown in Figure 6. This effect is very pronounced for
the 1000 mm (1 Diopter) near point eye model so that older patients (> 60 yr old) or those with a fixed focal length due
to an IOL will experience a very pronounced change in near point within the visual field subtended by the gas bubble
as the gas bubble shrinks.7

Another effect of the curvature is on the relationship between gas volume and retina coverage. From a clinical
viewpoint, sufficient gas volume needs to be injected to cover the portion of retina being treated. Based on observations
of gas injection into a plastic spherical eye model, Parver and Lincoff (1978) proposed that the relationship could be
based onmodeling the interface as flat. While this is appropriate for large volumes, as first noted by Hilton and Grizzard
(1986) in their clinical studies using computerized tomography (CT) to determine angular coverage and gas volume,

7In the final stages of the gas bubble dissolution, I estimated that the near point was at least 1 m from my eye, which has an IOL with a normal
fixed near point of 1 Diopter.
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Figure 5: Vitreous humour-gas interface in head down position. Left: representative shapes corresponding to the cases
in Table 1 for 21 mm diameter eye. Right: reciprocal of the radius of curvature at optical axis as a function of gas
layer thickness as measured along the optical axis from the bottom of the bubble to the retina. Results for three eye
diameters with common interface parameters θc = 39◦ (contact angle) and γ = 0.070 N/m (surface tension).

the Parver and Lincoff model significantly overestimates coverage for gas bubbles less than 2 ml. The Young-Laplace
solution also predicts significantly smaller coverage areas than the Parver and Lincoff and is consistent with the CT
results if the non-spherical shape of the eye is taken into account (Figure 7). Clinical practice (Hilton et al., 1996)
apparently relies on gas volumes based on the CT studies of Hilton and Grizzard with a volume of 0.3 cm3 for 60◦
coverage and 1.2 cm3 for 90◦ coverage of the retina. Hilton et al. also note that a highly myopic eye with a large
globe will require a larger amount of gas to cover the same surface area. The Young-Laplace model with the nominal
values of surface tension and contact angle are consistent with the clinical studies if the variation in eye shape between
individuals and the nonspherical shape of the eye is taken into account (see Table 1 and Figure 7).

The volume of gas needed to cover a given angle of the retina is for practical purposes, directly proportion to the
volume of the eye, so that the volumes required for the 24 mm diameter eye are (24/19)3 or 2 × larger than for the
19 mm diameter eye. The Young-Laplace model for a 21 mm diameter eye, assumed to be the nominal emmetropic
dimension, overpredicts the coverage angle for a given volume in comparison with the clinical data of Hilton and
Grizzard. Comparisons of the entire CT data set of Hilton and Grizzard (Figure 7) with the Young-Laplace model
using a range of effective eye diameters indicates that an effective diameter of 22 mm appear appropriate for the larger
coverage angles (182, 187, and 290◦) but a much larger effective diameter (26 mm) is more consistent with the data
for a coverage angle less than 90◦. For coverage angles less than 120◦, the Parver and Lincoff flat interface model
underpredicts the required gas volume by a minimum of a factor of two and as much as a factor of 5 at 60◦.

Table 1: Gas volumes V and associated bubble heights h required to produce a specified angular coverage of the retina
for three eye diameters using a spherical model for the intraocular cavity.

eye diameter
24 mm 21 mm 19 mm

Coverage V h V h V h
(deg) (cm3) (mm) (cm3) (mm) (cm3) (mm)
60 0.45 5.8 0.32 5.4 0.25 5.1
90 1.08 7.6 0.75 7.0 0.59 6.7
120 2.00 9.7 1.40 8.8 1.07 8.3
150 3.15 12.0 2.16 10.8 1.63 10.0
180 4.36 14.4 2.97 12.9 2.22 11.9
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Figure 6: Conjugate focus location as a function of gas layer thickness for three eye models using the curved interface
computed with the Young-Laplace model.

4 A Potential Clinical Application
If the near point of the eye without a gas layer is known or can be approximated, then the gas volume can be estimated
from measurements of the conjugate focus with the gas-filled eye. An example of the gas volume-conjugate focus
relationship is shown in the upper graph of Figure 8 for two eye accommodation models using the curved interface
results for a 21 mm eye model. These predictions are consistent with my own experience. Using the bridge of my nose
as a surrogate for the location of my corneal vertex, I estimated a value of about 90 to 100 mm for the near point 8 days
after my surgery; this increased to about 200 to 220 mm at 14 days when the bubble had shrunk to about 15% of the
original volume. Just before the bubble disappeared from my eye, I estimated that the near point had approached 1 m.

As discussed above, there is also a significant magnification effect which potentially could be used to estimate gas
bubble volume with the aid of the lower graph of Figure 8. However to utilize the magnification effect in conjunction
with the perceived extent of the bubble, rays with large angles from the optical axis will have to be considered. Such
analyses would need to use a more sophisticated description of the eye optical elements as having aspheric surfaces in
order to treat rays that are far from the optical axis; eye models with this sophistication are available and are reasonably
straightforward to use in modern optical analysis software (Greivenkamp et al., 1995).

Acknowledgement
I am grateful to my opthamologists who treated my cataract and retina conditions: Sunil Bhandarkar, M.D. of
Larchmont Eye Care and Daniel D. Esmaili, M.D. of Retina Vitreous Associates Medical Group. Dr. Esmaili
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Supplement: Analysis Methodologies

5 Ray Tracing
Ray tracing (Fowles, 1975, Ch. 10) is the process of simulating light by imagining the light emission from a point can
be modeled as a bundle of rays or lines that move on straight paths and only bend (refract) at interfaces such as the
surface between air and water.

For a simple optical system with components like lenses placed symmetrically on line (the z axis), a point on a ray
can be described by the angle with the axis θ and the perpendicular distance ρ from the z-axis. For small angles θ,
all the rays are sufficiently close to the axis that computations can be simplified by making the paraxial approximation
that the locations of the surfaces of interfaces, although curved, can be approximated as planes perpendicular to the
optical axis and the sine of the angle can be approximated by the angle itself.

The parameters of the ray can be specified by a column vector and the effect on the ray of passing through the
optical system can be specified by a matrix [M ]. The parameters at location z2 are related to those at location z1 by
matrix multiplication. [

ρ
θ

]
2

=

[
M11 M12

M21 M22

] [
ρ
θ

]
1

(1)

The matrix [M ] is constructed by multiplying the matrices [M ]n . . . [M ]2[M ]1 for the elements of the optical system.
There are only two kinds of elements needed: (a) translation through a distance d along the z-axis;

[M ] =

[
1 d
0 1

]
(2)

(b) refraction at a curved interface of radius R (convex R > 0, concave R < 0) between two media with indices of
refraction n1 and n2.

[M ] =

 1 0
1

R

(
n1
n2
− 1

)
n1
n2

 (3)

5.1 Eye Model
The Gullstrand-Le Grand schematic model of the eye (Figure 9) is highly idealized, assumes all the surfaces are
spherical and the eye is axisymmetric about the optical axis, which enables our simple ray tracing model to be applied.
To obtain the [M ] matrix of the eye requires multiplying a total of 8 matrices, which represent the cornea (c), the
aqueous humor (ah), the lens (l), and the vitreous humor (vh). The cornea and lens each require three matrices, one
for the anterior surface (a), one for interior, and one for the posterior surface (p). The parameters of Table 2 (with
one exception as discussed below) of these elements were taken from Gross et al. (2015); all dimensions are in mm.
More sophisticated models are available (Atchison, 2006, Flores-Arias et al., 2009, Navarro, 2009) that could be used
to refine the present results. The location of the retina relative to the lens posterior intersection with the optical axis
was adjusted empirically to create the two accommodation models with a near point of 250 mm (4 Diopter) and 1000
mm (1 Diopter). These values were chosen to simulate the nominal near points (NP) of a 40 yr and> 60 yr old (Gross
et al., 2015).

Figure 9: Schematic of Gullstrand-Le Grand eye model with representative rays imaging an object at the near point
onto the retina.
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Table 2: Geometric and refractive parameters used in the eye models.

Relaxed Accommodated
1000 mm NP 250 mm NP

n R z n R z R z
gas 1 1
cornea 1.3771 7.8 0 1.3771 7.8 0 7.8 0

6.5 0.55 6.5 0.55 6.5 0.55
aqueous 1.3374 1.3374
lens 1.42 10.2 3.6 1.427 6 3.2 6 3.2

-6 7.6 -5.5 7.7 -5.5 7.7
vitreous 1.336 1.336
retina -10.5 24.2 -10.5 23.228 -10.5 23.16

Two additional matrices are required to model the gas layer, one for the vitreous humor-gas interface (withR→∞
for a flat interface) and one for the gas itself. For the purposes of the present modeling effort, the exact composition
of the gas layer is not important and the results will apply equally to all gas mixtures (SF6, C3F8 and mixtures with
air) commonly used as tamponade. The index of refraction change across the gas-vitreous humor interface (-0.336) is
much larger than variations in the index of refraction (less than 0.0008, see Table 3) due to gas mixture composition
variation.

Table 3: Index of refraction for representative gases (Hayes, 2018) at 632.8 nm.

n
air 1.00029
SF6 1.000783
C3F8 1.00108

5.2 Conjugate focus location
An optical system like the schematic eye with fixed optical elements will only create a focused image of an object
placed at the conjugate focal location to the retina. The determination of the conjugate focus is aided by recognizing
that ray paths are reversible and a bundle of rays originating at the retina will be focused at the conjugate focal point.
Consider a ray originating on the axis (ρ1 = 0) at the conjugate focus location z1 in front of eye and coming to focus
on the retina at the axis ρ2 = 0 with some unknown value of θ2. Independent of the angle θ1, the ray must return to ρ
= 0. We can express this as the matrix equation[

0
θ2

]
=

[
M11 M12

M21 M22

] [
1 z1
0 1

] [
0
θ1

]
=

[
M11 M12

M21 M22

] [
z1θ1
θ1

]
(4)

and by inverting the matrix [M ], we can determine the z1 from z1 = b1/b2 independent of an arbitrarily chosen value
of θ2 where b1 and b2 are given by [

b1
b2

]
=

[
z1θ1
θ1

]
=

[
M11 M12

M21 M22

]−1 [
0
θ2

]
. (5)
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5.3 Magnification
Once the conjugate focus z1 is determined, the lateral magnification m is defined as the ray height ρ2 in the image
plane of an object located at the conjugate focus and having a unit height ρ = 1.[

m
θ2

]
=

[
M11 M12

M21 M22

] [
1 z1
0 1

] [
1
θ1

]
(6)

5.4 Tilted Interface
To model a tilted interface in conformation with Snell’s law, an additional deflection needs to be added to the ray angle
after applying the normal interface transformation matrix. The transformation of a ray moving from medium 1 to
medium 2 through a slightly8 tilted interface is given by[

ρ2
θ2

]
=

[
1 0
0 n1/n2

] [
ρ1
θ1

]
+

[
0

1− n1/n2

]
ψ . (7)

where ψ is the angle measured from the perpendicular to the optical axis and positive for counterclockwise rotation.

5.5 Magnifying Lens
A thin lens consists of medium of index n2 bounded by two surfaces close together with different radii of curvature,
Ra andRb and immersed in a medium with index n1. If we ignore the thickness of the lens, the combined effect of the
two interfaces is to act as a single lens element with a focal length f defined by

1

f
=

(
n1
n2
− 1

)(
1

Ra
− 1

Rb

)
. (8)

The ray transformation matrix is [
1 0
−f−1 1

]
(9)

To determine the effect of using a magnifying lens in front of the eye, consider placing the lens at distance d1 in front
of the cornea and the object at a distance d2 from the lens. The ray parameters at the retina will be obtained by using
the following sequence of matrix operations on the ray parameters at the object.[

ρ2
θ2

]
=

[
M11 M12

M21 M22

] [
1 d1
0 1

] [
1 0
−f−1 1

]
︸ ︷︷ ︸

magnifier-eye combinationM ′

[
1 d2
0 1

] [
ρ1
θ1

]
=

[
M ′11 M ′12
M ′21 M ′22

] [
ρ1 + d2θ1

θ1

]
(10)

If we require the distance d2 to be the conjugate focus of the retina for the magnifier eye combination, then for points
on the optical axis, ρ1 = ρ2 = 0 and the conjugate focus is determined by[

0
θ2

]
=

[
M ′11 M ′12
M ′21 M ′22

] [
d2θ1
θ1

]
. (11)

As with the case of the eye alone, the conjugate focus can be determined by using the inverse matrix to find d2 = b1/b2.[
b1
b2

]
=

[
M ′11 M ′12
M ′21 M ′22

]−1 [
0
θ2

]
(12)

8The angle cannot be too large or the paraxial ray approximation will not be valid.
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6 Bubble shape
The bubble shape is determined by a delicate balance of the forces created by interfacial tension with the hydrostatic
pressure difference due to gravity and the different in elevation of portions of the bubble surface. The balance between
pressure difference∆P across the gas-vitreous humor interface and surface tension is given by Young-Laplace equation
(Batchelor, 1967, p. 65)

∆P = γ

(
1

R1
+

1

R2

)
(13)

where γ = surface tension. The surface tension of the gas-vitreous humor interface is usually assumed (Eames et al.,
2010, de Juan et al., 1985) to be similar to that of an air-water interface, which has γ ≈ 0.07 N/m between 25
and 38◦C. The pressure within the gas bubble is essentially constant, with a maximum possible variation of 10 Pa
(0.07 mm Hg) between the top and bottom of the eye. The pressure difference across the gas-vitreous humor interface
can be approximated by the hydrostatic pressure variation within the liquid alone which depends only on the elevation
z of the interface at that location. Using the contact line location zc = S(rc) on the retina as a reference, the pressure
difference at other locations will be

∆P = Pgas − Pvh = ∆Pc + ρg(z − zc) where ∆Pc = γ

(
1

R1
+

1

R2

)
zc

. (14)

If we choose the location of the interface at the optical axis z◦ = S(0) as a reference then the pressure difference will be

∆P = Pgas − Pvh = ∆P◦ + ρg(z − z◦) where ∆P◦ = γ

(
1

R1
+

1

R2

)
z◦

. (15)

The forces are small but significant, the maximum hydrostatic pressure difference (ρgh) possible within the eye is
less than = 245 Pa (1.8 mm Hg). If the hydrostatic and surface tension forces are just in balance for a spherical bubble
of radius a∗ (R1 = R2 = a∗), this gives a typical size of a bubble which will have a strongly curved interface

a∗ =

√
γ

2gρ
. (16)

Assuming a vitreous humor density ρ = 1000 kg/m3, similar to water, the critical size a∗ = 1.9 mm. Gas bubbles
comparable to this radius or smaller will be spherical, bubbles that are much larger will be flattened on the anterior
surface and the interface curvature will be concentrated near the intersection with the retina. The shape of the interface
near the contact line or intersection of the gas-vitreous humor interface with the retina is determined by the balance of
the interfacial forces including traction exerted on both gas and liquid by the retina.

This balance of forces results in the interface intersecting the surface of the retina at a well defined contact angle
θc due to the traction on the vitreous humor by the retina pulling the contact line upward. For the contact between
gas-vitreous humor and the retina, a range of values between 30 and 43◦ have been measured. Fawcett et al. (1994)
made contact angle measurements using ex vivo retina specimens mounted on a flat surface (38.8±3.17◦) and a flat
protein-coated plastic surface (43.0±13.9◦); Eames et al. (2010) used a spherical cavity with a protein-coated plastic
surface (30.74±4.24◦). In both sets of measurements, the gas was air and the vitreous humor was simulated by a water
or phosphate-buffered saline solution. We have used a value of 39◦ in our simulations.

Away from the contact line, the Young-Laplace equation will determine how the elevation of the interface changes
with radius, and influencing the curvature of the interface at the optical axis. Assuming a head-down position with
a vertical optical axis, the bubble shape is symmetric about the optical axis and the analysis of the bubble shape is
greatly simplified. Sufficiently close to the origin, the shape of the interface will be spherical and the principal radii of
curvature are equal. The principal radii of curvature R1 and R2 are determined by the shape of the interface (O’Neill,
1966, p. 235), which can be computed from the interface shape function S(r) = z and its derivatives

S′ =
dS
dr

and S′′ =
d2S
dr2

. (17)

The sum of the reciprocals of the principal radii of curvature (twice the mean curvature) for an axi-symmetric surface
is

1

R1
+

1

R2
=

S′′

(1 + S′2)
3/2

+
1

(1 + S′2)
1/2

S′

r
. (18)
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The specification of the interface location as a function z = S(r) is logical but difficult to work with for a bubble since
S is a multivalued function of r. Specifying r =R(z) resolves that issue but some care is needed evaluating derivatives
close to the axis (r→ 0 and z→ z◦). Using this alternative parameterization and defining

R′ =
dR
dz

and R′′ =
d2R
dz2

, (19)

we can obtain an alternative expression for the sum of the reciprocals of the principal radii of curvature

1

R1
+

1

R2
= − R′′

(R′2 + 1)
3/2

+
1

(R′2 + 1)
1/2

1

R
. (20)

The relationships between the derivatives of the quantities S and R are

dS

dr
=

(
dR

dz

)−1
and

d2S
dr2

= −
(

dR

dz

)−3 d2R
dz2

. (21)

At the axis of symmetry, r = 0 and z = z◦, we have the following values for S and its derivatives

S(0) = z◦ , S′(0) = 0 , S′′(0) =
1

R◦
≥ 0 . (22)

Using a Taylor series expansion of S(r) near the axis, we can compute the quantities in the mean curvature expression
through a limiting process

lim
r→0

S′(r)

r
= S′′(0) , lim

z→z◦

1

RR′(z)
= S′′(0) , lim

z→z◦

−R′′(z)
(R′(z))

3 = S′′(0) , (23)

and (
1

R1
+

1

R2

)
r=0

= 2S′′(0) . (24)

At the contact line, z = zc and r = rc, the interface must intersect the retina surface so that the included angle
between the interface and retina is always θc. Referring to Figure 10, elementary trigonometry gives the relationship

Figure 10: Geometry of a bubble interface showing the definition of the trigonometric parameters and variables used
in the solution of the bubble shape.

between the angles to be
φ− θ =

π

2
− θc , (25)
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where the angle φ of the interface relative to the horizontal reference is defined by

tanφ =

(
dz

dr

)
rc

= S′(rc) =
1

R′(zc)
. (26)

The angle θ of the contact line above the horizontal reference z = 0 is defined by the geometry as

tan θ =
zc√

a2 − z2c )
. (27)

Using standard trigonometric identities we can write the contact angle condition as (taking care to select the appropriate
branches of the tangent function).

R′(zc) =
1

tanφ
=

tan θc − tan θ

1 + tan θ tan θc
. (28)

The shape of the interface will be determined by integrating the differential equation resulting from applying the
Young-Laplace equation on the interface. The domain of integration is between the axis of symmetry and the contact
line, z◦ ≤ z ≤ zc (0 ≤ r ≤ rc). In terms of the parametrization R(z), the equation is9

R′′ +
(
R′2 + 1

)3/2 [ 2

R◦
+
ρg

γ
(z − z◦)

]
−
(
R′2 + 1

)
R

= 0 . (29)

One way to obtain a solution is to assume a location zc of the contact line to find starting values

R(zc) =
√
a2 − z2c , R′(zc) =

tan θc − tan θ

1 + tan θ tan θc
where tan θ =

zc
R(zc)

. (30)

Using these values and an assumed value of R◦ and z◦, the differential equation for R can be integrated from the
contact line toward the axis of symmetry. As the interface approaches the optical axis, the interface flattens and the
curvature decreases. Because the optical axis is an axis of symmetry for the surface and the surface is smooth and
without kinks, the interface slope has to smoothly approach zero, i.e., R′ →∞ as z → z◦. Upon reaching R = 0 (the
axis), the value of z = zb and the radius of curvature can be computed and checked for consistency with the assumed
values. Unfortunately, this is difficult to do in practice because of the singularity of R′ at the origin and need to
simultaneously solve for R◦ and z◦.

6.1 Adams’ Formulation
Computing the surface shape with either the S(r) or R(z) shape function is difficult to implement numerically as a
two-point boundary value problem. Both the height zc of the interface and the radius of curvature R◦ at the origin are
unknown and have to be sought as part of the solution, which is very sensitive to these values, making it difficult to
obtain convergence. Solutions that employR(z) and integrate in z from zc to z◦ are singular at the origin whereR′(0)
=∞. Solutions that employ S(r) to integrate in r from r = 0 to rc can potentially have an internal singularity S′ =∞
when the interface is vertical and the direction of integration in r changes sign at this point.

J.C. Adams10 discovered an alternative formulation (Bashforth and Adams, 1883, Ch. III) that solves all these
problems and is straightforward to integrate numerically. Adams uses the angle of the surface normal φ or arc length s
and the meridional radius of curvature R1 as the independent variables. Adams also simplified the notation by scaling
all lengths in terms of the radius of curvature R◦ at the origin and introduced a single nondimensional parameter to
characterize the relative effects of surface tension and gravity. The scaled variables are

r̃ =
r

R◦
z̃ =

z

R◦
% =

R1

R◦
, (31)

9 Eames et al. (2010) take this approach but the equations given in their appendix are incorrect, there is a sign error in the boundary condition
and the Young-Laplace equation is missing the term 2/R◦.

10British mathematician and astronomer (b. 1818-d. 1892) who predicted the existence of the planet Neptune. Goldstine (1977) discusses the
historical context of Adams’ work and states (Goldstine, 1977, p. 205) that the method of solution presented in Ch. III of Bashforth and Adams
(1883) should be credited to Adams alone.
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and the equations are

dr̃

dφ
= % cosφ , (32)

dz̃

dφ
= % sinφ , (33)

where the scaled meridonal radius of curvature % = R1/R◦ is defined by the Young-Laplace equation in the form

1

%
+

sinφ

r̃
= 2 + βz̃ , (34)

and β = R2
◦ρg/γ is the Bond number. The relationship of the variables % and φ to the derivatives of z(r) are

1

%
=

d2z̃
r̃[

1 +

(
dz̃

dr̃

)2
]3/2 (35)

sinφ =

dz̃

dr̃[
1 +

(
dz̃

dr̃

)2
]1/2 (36)

The equations for r̃ and z̃ can be integrated from the origin for assumed value of β (or equivalentlyR◦) using the initial
conditions

r̃ = 0 at φ = 0 , (37)
z̃ = 0 at φ = 0 . (38)

The choice of z̃ = 0 at the origin is arbitrary and for the situation of a bubble within an eye, will be determined after
the contact angle condition is applied at the bubble boundary. Near the origin, Adams determined the following power
series expansions in φ.

r̃ = φ−
(

1

6
+

1

8
β

)
φ3 +

(
1

120
+

1

24
β +

1

24
β2

)
φ5 − . . . , (39)

z̃ =
1

2
φ2 −

(
1

24
+

3

32
β

)
φ4 +

(
1

720
+

1

72
β +

5

144
β2

)
φ6 − . . . , (40)

1

%
= 1 +

3

8
βφ2 +

(
− 1

48
β − 13

192
β2

)
φ4 +

(
111

5760
β +

1

128
β2 +

229

9216
β3

)
φ6 . . . . (41)

These results can be used to show that at the origin

lim
φ→0

sinφ

r̃
= 1 . (42)

Adams actually computed these expansions up to the 11th power in φ but I have only used the first three terms to
initialize my solution. Adams points out that using φ as an independent variable is appropriate only as long as β > 0
(gas bubbles) and shows that using arc length s is a more general solution that also works for β < 0, the case of liquid
drops. The revised set of differential equations in terms of scaled arc length s̃ = s/R◦:

dφ

ds̃
=

1

%
, (43)

dr̃

ds̃
= cosφ , (44)

dz̃

ds̃
= sinφ . (45)
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and Adams gives the expansions near the origin in terms of s̃ as

φ = s̃+
1

8
βs̃3 +

(
− 1

240
β+ 1

192
β2

)
s̃5 +

(
11

40320
β − 11

13440
β2 +

1

9216
β3

)
s̃7 − . . . , (46)

r̃ = s̃− 1

6
s̃3 +

(
1

120
− 1

40
β

)
s̃5 −

(
1

5040
− 1

280
β +

5

2688
β2

)
s̃7 − . . . , (47)

z̃ =
1

2
s̃2 +

(
− 1

24
+

1

32
β

)
s̃4 +

(
1

720
− 1

90
β +

1

1152
β2

)
s̃6 − . . . , (48)

1

%
= 1 +

3

8
βs̃2 +

(
− 1

48
β +

5

192
β2

)
s̃4 +

(
11

5760
β − 11

1920
β2 +

7

9216
β3

)
s̃6 . . . . (49)

Adams developed what is known today as the Adams-Bashforth predictor-corrector method (Bashforth and Adams,
1883, See Ch. III) for solving the differential equation system using the series expansion to obtain the starting values.
This method was used to create the tables in Bashforth and Adams of numerical values of the normalized interface
shape for Bond numbers between 0.125 and 100. My numerical solutions were carried out with MATLAB 2018a and
the stiff integration method ode15swith relative and absolute tolerances of 10−12; the first three terms of Adams’ small
angle expansion were used to start the solution at φ = 10−7. Comparison of the 1883 tabulation and 2018 solutions
(Figure 11) verifies that the differences between the (r̃, z̃) values for two solutions at a given value of φ are at most ±1
in the least significant digit over the entire surface.11
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Figure 11: Comparison of the Bashforth and Adams (1883) tabulated solution for β = 9 with current MATLAB
integration results.

6.2 Volume and Coverage Angle
The volume of a gas bubble can be computed by integration using the radius as a function of vertical distance, r(z).

V =

∫ a

z◦

πr2(z) dz (50)

11The tables in Bashforth and Adams give the results to five significant digits for values of φ from 0 to 180◦ in 5◦ increments.
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The integration has to be carried out numerically for the portion of the bubble below the contract line (z = zc) but an
analytical expression can be obtained for the spherical cap above the contact line

V = Vbub + Vcap , (51)

where the bubble volume below the contact line is

Vbub =

∫ zc

z◦

πr2(z)dz . (52)

The volume of the cap is most simply computed using the angle θ as the independent variable. For a sphere of radius
a, the volume of the cap is

Vcap(θ) = πa2
(

2

3
− sin θ +

1

3
sin3 θ

)
. (53)

The coverage angle is the angle subtended by the portion of the retina covered by gas in the head down position.

θcov = π − 2θ (54)


